2026-01-18

1563: For Map Between Sets, Image of Intersection of Preimages of Codomain Subsets Is Intersection of Images of Preimages of Codomain Subsets

<The previous article in this series | The table of contents of this series | The next article in this series>

description/proof of that for map between sets, image of intersection of preimages of codomain subsets is intersection of images of preimages of codomain subsets

Topics


About: set

The table of contents of this article


Starting Context



Target Context


  • The reader will have a description and a proof of the proposition that for any map between any sets, the image of the intersection of the preimages of any codomain subsets is the intersection of the images of the preimages of the codomain subsets.

Orientation


There is a list of definitions discussed so far in this site.

There is a list of propositions discussed so far in this site.


Main Body


1: Structured Description


Here is the rules of Structured Description.

Entities:
\(S_1\): \(\in \{\text{ the sets }\}\)
\(S_2\): \(\in \{\text{ the sets }\}\)
\(f\): \(: S_1 \to S_2\)
\(J\): \(\in \{\text{ the possibly uncountable index sets }\}\)
\(\{S_{2, j} \subseteq S_2 \vert j \in J\}\):
//

Statements:
\(f (\cap_{j \in J} f^{-1} (S_{2, j})) = \cap_{j \in J} f (f^{-1} (S_{2, j}))\)
//


2: Proof


Whole Strategy: Step 1: see that \(f (\cap_{j \in J} f^{-1} (S_{2, j})) \subseteq \cap_{j \in J} f (f^{-1} (S_{2, j}))\); Step 2: see that \(\cap_{j \in J} f (f^{-1} (S_{2, j})) \subseteq f (\cap_{j \in J} f^{-1} (S_{2, j}))\); Step 3: conclude the proposition.

Step 1:

Let \(s \in f (\cap_{j \in J} f^{-1} (S_{2, j}))\) be any.

There is an \(s' \in \cap_{j \in J} f^{-1} (S_{2, j})\) such that \(f (s') = s\).

\(s' \in f^{-1} (S_{2, j})\) for each \(j \in J\).

\(s = f (s') \in f (f^{-1} (S_{2, j}))\) for each \(j\).

So, \(s \in \cap_{j \in J} f (f^{-1} (S_{2, j}))\).

So, \(f (\cap_{j \in J} f^{-1} (S_{2, j})) \subseteq \cap_{j \in J} f (f^{-1} (S_{2, j}))\).

Step 2:

Let \(s \in \cap_{j \in J} f (f^{-1} (S_{2, j}))\) be any.

\(s \in f (f^{-1} (S_{2, j}))\) for each \(j \in J\).

Let \(l \in J\) be any fixed one.

As \(s \in f (f^{-1} (S_{2, l}))\), there is an \(s' \in f^{-1} (S_{2, l})\) such that \(f (s') = s\).

Let \(m \in J\) be any.

\(s = f (s') \in f (f^{-1} (S_{2, m}))\).

So, \(s' \in f^{-1} (f (f^{-1} (S_{2, m})))\).

But \(f (f^{-1} (S_{2, m})) \subseteq S_{2, m}\).

So, \(f^{-1} (f (f^{-1} (S_{2, m}))) \subseteq f^{-1} (S_{2, m})\).

\(s' \in f^{-1} (f (f^{-1} (S_{2, m}))) \subseteq f^{-1} (S_{2, m})\).

So, \(s' \in \cap_{j \in J} f^{-1} (S_{2, j})\).

So, \(s = f (s') \in f (\cap_{j \in J} f^{-1} (S_{2, j}))\).

So, \(\cap_{j \in J} f (f^{-1} (S_{2, j})) \subseteq f (\cap_{j \in J} f^{-1} (S_{2, j}))\).

Step 3:

So, \(f (\cap_{j \in J} f^{-1} (S_{2, j})) = \cap_{j \in J} f (f^{-1} (S_{2, j}))\).


References


<The previous article in this series | The table of contents of this series | The next article in this series>