2025-12-07

1476: Rank-Nullity Law for Linear Map Between Finite-Dimensional Vectors Spaces

<The previous article in this series | The table of contents of this series | The next article in this series>

description/proof of rank-nullity law for linear map between finite-dimensional vectors spaces

Topics


About: vectors space

The table of contents of this article


Starting Context



Target Context


  • The reader will have a description and a proof of the rank-nullity law for linear map between finite-dimensional vectors spaces.

Orientation


There is a list of definitions discussed so far in this site.

There is a list of propositions discussed so far in this site.


Main Body


1: Structured Description


Here is the rules of Structured Description.

Entities:
\(F\): \(\in \{\text{ the fields }\}\)
\(V_1\): \(\in \{\text{ the } F \text{ vectors spaces }\}\)
\(V_2\): \(\in \{\text{ the } F \text{ vectors spaces }\}\)
\(f\): \(: V_1 \to V_2\), \(\in \{\text{ the linear maps }\}\)
//

Statements:
\(Dim (V_1) = Rank (f) + Nullity (f)\)
//


2: Proof


Whole Strategy: Step 1: take any basis for \(f (V_1)\), \((f (v_{1, 1}) = b_{2, 1}, ..., f (v_{1, r}) = b_{2, r})\), and any basis for \(Ker (f)\), \((b_{1, 1}, ..., b_{1, k})\); Step 2: see that \((b_{1, 1}, ..., b_{1, k}, v_{1, 1}, ..., v_{1, r})\) is a basis for \(V_1\).

Step 1:

Let us take any basis for \(f (V_1)\), \((f (v_{1, 1}) = b_{2, 1}, ..., f (v_{1, r}) = b_{2, r})\): there may be some multiple options for \(v_{1, j}\) to \(b_{2, j}\), but choose any of the options.

Let us take any basis for \(Ker (f)\), \((b_{1, 1}, ..., b_{1, k})\).

Step 2:

Let us see that \((b_{1, 1}, ..., b_{1, k}, v_{1, 1}, ..., v_{1, r})\) is a basis for \(V_1\).

Let \(r^1 b_{1, 1} + ... + r^k b_{1, k} + s^1 v_{1, 1} + ... + s^r v_{1, r} = 0\), where \(r^j, s^j \in F\).

\(f (r^1 b_{1, 1} + ... + r^k b_{1, k} + s^1 v_{1, 1} + ... + s^r v_{1, r}) = f (0) = 0\).

\(= r^1 f (b_{1, 1}) + ... + r^k f (b_{1, k}) + s^1 f (v_{1, 1}) + ... + s^r f (v_{1, r}) = r^1 0 + ... + r^k 0 + s^1 b_{2, 1} + ... + s^r b_{2, r}\).

That implies that \(s^1 = ... = s^r = 0\).

So, \(r^1 b_{1, 1} + ... + r^k b_{1, k} = 0\).

That implies that \(r^1 = ... = r^k = 0\).

So, \((b_{1, 1}, ..., b_{1, k}, v_{1, 1}, ..., v_{1, r})\) is linearly independent.

Let \(v \in V_1\) be any.

\(f (v) = c^1 b_{2, 1} + ... c^r b_{2, r}\).

\(v - (c^1 v_{1, 1} + ... + c^r v_{1, r}) \in Ker (f)\), because \(f (v - (c^1 v_{1, 1} + ... + c^r v_{1, r})) = f (v) - (c^1 f (v_{1, 1}) + ... + c^r f (v_{1, r})) = f (v) - (c^1 b_{2, 1} + ... + c^r b_{2, r}) = 0\).

So, \(v - (c^1 v_{1, 1} + ... + c^r v_{1, r}) = d^1 b_{1, 1} + ... d^k b_{1, k}\).

So, \(v = d^1 b_{1, 1} + ... d^k b_{1, k} + c^1 v_{1, 1} + ... + c^r v_{1, r}\).

So, \((b_{1, 1}, ..., b_{1, k}, v_{1, 1}, ..., v_{1, r})\) spans \(V_1\).

So, \((b_{1, 1}, ..., b_{1, k}, v_{1, 1}, ..., v_{1, r})\) is a basis for \(V_1\).

By the proposition that for any vectors space, the bases have the same cardinality, \(Dim (V_1) = Rank (f) + Nullity (f)\).


References


<The previous article in this series | The table of contents of this series | The next article in this series>