2025-11-23

1458: For Real Number Larger than \(1\), \(p\), Its Exponent Conjugate, \(q\), and Non-Negative Real Numbers, \(r_1\) and \(r_2\), \(r_1 r_2\) Is Equal to or Smaller than \({r_1}^p / p\) Plus \({r_2}^q / q\)

<The previous article in this series | The table of contents of this series | The next article in this series>

description/proof of that for real number larger than \(1\), \(p\), its exponent conjugate, \(q\), and non-negative real numbers, \(r_1\) and \(r_2\), \(r_1 r_2\) is equal to or smaller than \({r_1}^p / p\) plus \({r_2}^q / q\)

Topics


About: set

The table of contents of this article


Starting Context



Target Context


  • The reader will have a description and a proof of the proposition that for any real number larger than \(1\), \(p\), its exponent conjugate, \(q\), and any non-negative real numbers, \(r_1\) and \(r_2\), \(r_1 r_2\) is equal to or smaller than \({r_1}^p / p\) plus \({r_2}^q / q\).

Orientation


There is a list of definitions discussed so far in this site.

There is a list of propositions discussed so far in this site.


Main Body


1: Structured Description


Here is the rules of Structured Description.

Entities:
\(p\): \(\in \mathbb{R}\), such that \(1 \lt p\)
\(q\): \(= \text{ the exponent conjugate of } p\), \(\in \mathbb{R}\)
\(r_1\): \(\in \mathbb{R}\), such that \(0 \le r_1\)
\(r_2\): \(\in \mathbb{R}\), such that \(0 \le r_2\)
//

Statements:
\(r_1 r_2 \le {r_1}^p / p + {r_2}^q / q\)
//


2: Proof


Whole Strategy: Step 1: deal with the \(r_1 = 0\) or \(r_2 = 0\) case; Step 2: otherwise, see that \(0 \le - t^{1 / p} + 1 / p t + 1 - 1 / p\) for \(0 \lt t\) proves the proposition; Step 3: see that \(0 \le - t^{1 / p} + 1 / p t + 1 - 1 / p\) for \(0 \lt t\).

Step 1:

Let us suppose that \(r_1 = 0\) or \(r_2 = 0\).

\(r_1 r_2 = 0\).

\(0 \le {r_1}^p / p + {r_2}^q / q\).

So, \(r_1 r_2 \le {r_1}^p / p + {r_2}^q / q\).

Step 2:

Let us suppose otherwise.

Let us see that \(0 \le - t^{1 / p} + 1 / p t + 1 - 1 / p\) for \(0 \lt t\) proves the proposition.

Let us take \(t = {r_1}^p {r_2}^{- q}\), which satisfies \(0 \lt t\).

\(0 \le - ({r_1}^p {r_2}^{- q})^{1 / p} + 1 / p ({r_1}^p {r_2}^{- q}) + 1 - 1 / p\).

\(({r_1}^p {r_2}^{- q})^{1 / p} \le 1 / p ({r_1}^p {r_2}^{- q}) + 1 / q\), but the left hand side is \(r_1 {r_2}^{- q / p}\).

\(r_1 {r_2}^{- q / p} {r_2}^q \le (1 / p ({r_1}^p {r_2}^{- q}) + 1 / q) {r_2}^{q}\), but the left hand side is \(r_1 {r_2}^{- q / p + q} = r_1 {r_2}^{(1 - 1 / p) q} = r_1 {r_2}^{q / q} = r_1 r_2\), and the right hand side is \(1 / p {r_1}^p + 1 / q {r_2}^q\).

So, \(r_1 r_2 \le {r_1}^p / p + {r_2}^q / q\).

Step 3:

Let us see that \(0 \le - t^{1 / p} + 1 / p t + 1 - 1 / p\) for \(0 \lt t\).

Let \(f: (0, \infty) \to \mathbb{R}, t \mapsto - t^{1 / p} + 1 / p t + 1 - 1 / p\).

\(d f / d t = - 1 / p t^{1 / p - 1} + 1 / p\).

\(d^2 f / d t^2 = - 1 / p (1 / p - 1) t^{1 / p - 2}\).

\(0 \lt d^2 f / d t^2\).

\(d f / d t = 0\) only when \(t = 1\).

So, \(f\) takes the minimum at \(t = 1\).

But \(f (1) = 0\).

So, \(0 \le f\).


References


<The previous article in this series | The table of contents of this series | The next article in this series>