2025-11-09

1419: For Map into Euclidean Set and Characteristic Function, Preimage of Subset under Map Multiplied by Characteristic Function Is This

<The previous article in this series | The table of contents of this series | The next article in this series>

description/proof of that for map into Euclidean set and characteristic function, preimage of subset under map multiplied by characteristic function is this

Topics


About: set

The table of contents of this article


Starting Context



Target Context


  • The reader will have a description and a proof of the proposition that for any map into any Euclidean set and any characteristic function, the preimage of any subset under the map multiplied by the characteristic function is this.

Orientation


There is a list of definitions discussed so far in this site.

There is a list of propositions discussed so far in this site.


Main Body


1: Structured Description


Here is the rules of Structured Description.

Entities:
\(S'\): \(\in \{\text{ the sets }\}\)
\(\mathbb{R}^d\): \(= \text{ the Euclidean set }\)
\(f\): \(: S' \to \mathbb{R}^d\)
\(S\): \(\subseteq S'\)
\(\chi_S\): \(= \text{ the characteristic function over } S\)
\(S''\): \(\subseteq \mathbb{R}^d\)
//

Statements:
when \(0 \notin S''\), \((\chi_S f)^{-1} (S'') = S \cap f^{-1} (S'')\)
\(\land\)
when \(0 \in S''\), \((\chi_S f)^{-1} (S'') = (S \cap f^{-1} (S'' \setminus \{0\})) \cup ((S' \setminus S) \cup f^{-1} (0))\)
//


2: Proof


Whole Strategy: Step 1: suppose \(0 \notin S''\), and see that \((\chi_S f)^{-1} (S'') = S \cap f^{-1} (S'')\); Step 2: suppose \(0 \in S''\), and see that \((\chi_S f)^{-1} (S'') = (S \cap f^{-1} (S'' \setminus \{0\})) \cup ((S' \setminus S) \cup f^{-1} (0))\).

Step 1:

Let us suppose that \(0 \notin S''\).

Let us see that \((\chi_S f)^{-1} (S'') = S \cap f^{-1} (S'')\).

Let \(s \in (\chi_S f)^{-1} (S'')\) be any.

\((\chi_S f) (s) = \chi_S (s) f (s) \in S''\).

As \((\chi_S f) (s) \neq 0\), \(\chi_S (s) \neq 0\), so, \(s \in S\).

\(\chi_S (s) f (s) = f (s) \in S''\), so, \(s \in f^{-1} (S'')\).

So, \(s \in S \cap f^{-1} (S'')\).

Let \(s \in S \cap f^{-1} (S'')\) be any.

\((\chi_S f) (s) = f (s) \in S''\), so, \(s \in (\chi_S f)^{-1} (S'')\).

So, \((\chi_S f)^{-1} (S'') = S \cap f^{-1} (S'')\).

Step 2:

Let us suppose that \(0 \in S''\).

\(S'' = (S'' \setminus \{0\}) \cup \{0\}\).

\((\chi_S f)^{-1} (S'') = (\chi_S f)^{-1} ((S'' \setminus \{0\}) \cup \{0\}) = (\chi_S f)^{-1} (S'' \setminus \{0\}) \cup (\chi_S f)^{-1} (\{0\})\), by the proposition that for any map, the map preimage of any union of sets is the union of the map preimages of the sets.

\((\chi_S f)^{-1} (S'' \setminus \{0\}) = S \cap f^{-1} (S'' \setminus \{0\})\), by Step 1.

Let us see that \((\chi_S f)^{-1} (\{0\}) = (S' \setminus S) \cup f^{-1} (0)\).

Let \(s \in (\chi_S f)^{-1} (\{0\})\) be any.

\(\chi_S f (s) = \chi_S (s) f (s) = 0\), so, \(\chi_S (s) = 0\) or \(f (s) = 0\), so, \(s \in S' \setminus S\) or \(s \in f^{-1} (0)\), so, \(s \in (S' \setminus S) \cup f^{-1} (0)\).

Let \(s \in (S' \setminus S) \cup f^{-1} (0)\) be any.

\((\chi_S f) (s) = \chi_S (s) f (s)\), but while \(s \in S' \setminus S\) or \(s \in f^{-1} (0)\), \(s \in S' \setminus S\) implies that \(\chi_S (s) = 0\) and \(s \in f^{-1} (0)\) implies that \(f (s) = 0\), so, \(\chi_S (s) f (s) = 0\) anyway, so, \(s \in (\chi_S f)^{-1} (\{0\})\).

So, \((\chi_S f)^{-1} (\{0\}) = (S' \setminus S) \cup f^{-1} (0)\).

So, \((\chi_S f)^{-1} (S'') = (S \cap f^{-1} (S'' \setminus \{0\})) \cup ((S' \setminus S) \cup f^{-1} (0))\).


References


<The previous article in this series | The table of contents of this series | The next article in this series>