2025-05-11

1113: Antisymmetrization of Tensor Product of Tensors Is Antisymmetrizations Applied Sequentially

<The previous article in this series | The table of contents of this series | The next article in this series>

description/proof of that antisymmetrization of tensor product of tensors is antisymmetrizations applied sequentially

Topics


About: vectors space

The table of contents of this article


Starting Context



Target Context


  • The reader will have a description and a proof of the proposition that the antisymmetrization of the tensor product of any tensors is the antisymmetrizations applied sequentially.

Orientation


There is a list of definitions discussed so far in this site.

There is a list of propositions discussed so far in this site.


Main Body


1: Structured Description


Here is the rules of Structured Description.

Entities:
F: { the fields }
{V,W}: { the F vectors spaces }
t1: L(V,...,V:W), where V appears k1 times
t2: L(V,...,V:W), where V appears k2 times
//

Statements:
Asym(t1t2)=Asym(Asym(t1)t2)=Asym(t1Asym(t2))
//


2: Note


By applying this proposition sequentially, Asym(t1...tn) can be expressed in many ways.

For example, Asym(t1t2t3)=Asym((t1t2)t3)=Asym(Asym(t1t2)t3)=Asym(Asym(Asym(t1)t2)t3).

There can be a more general proposition on partial antisymmetrization, but as it seems to become cumbersome and our immediate necessity requires only full antisymmetrizations, this proposition deals with only full antisymmetrizations.


3: Proof


Whole Strategy: Step 1: let (v1,...,vk1+k2)V×...×V be any; Step 2: let Asym(t1t2) operate on (v1,...,vk1+k2) and expand the result; Step 3: let Asym(Asym(t1)t2) operate on (v1,...,vk1+k2) and expand the result; Step 4: let Asym(t1Asym(t2)) operate on (v1,...,vk1+k2) and expand the result.

Step 1:

Let (v1,...,vk1+k2)V×...×V be any.

If some 2 tensors operate on it with the same result, the 2 tensors will be the same.

Step 2:

Let Asym(t1t2) operate on (v1,...,vk1+k2).

Asym(t1t2)((v1,...,vk1+k2))=1/(k1+k2)!σSk1+k2sgnσt1t2(vσ1,...,vσk1+k2).

σ can be expressed as σ1σ2σ, where σ is the permutation that permutates (σ1,...,σk1) and (σk1+1,...,σk1+k2) into the increasing orders after σ, and σ1 or σ2 returns (σ1,...,σk1) or (σk1+1,...,σk1+k2) back to (σ1,...,σk1) or (σk1+1,...,σk1+k2), respectively.

The set of σ1 s is practically the symmetric group, Sk1; the set of σ2 s is practically the symmetric group, Sk2.

So, σ1σ2σ means that any Sk1+k2 element is 1st, permutating (1,...,k1+k2) such that (σ1,...,σk1) and (σk1+1,...,σk1+k2) are in the increasing orders, and then, permuting (σ1,...,σk1) and (σk1+1,...,σk1+k2).

sgnσ=sgnσ1sgnσ2sgnσ.

So, Asym(t1t2)((v1,...,vk1+k2))=1/(k1+k2)!σsgnσσ1sgnσ1σ2sgnσ2t1t2(v(σ1σ2σ)1,...,v(σ1σ2σ)k1+k2)=1/(k1+k2)!σsgnσσ1sgnσ1t1(v(σ1σ2σ)1,...,v(σ1σ2σ)k1)k2!/k2!σ2sgnσ2t2(v(σ1σ2σ)k1+1,...,v(σ1σ2σ)k1+k2).

(v(σ1σ2σ)1,...,v(σ1σ2σ)k1)=(v(σ1σ)1,...,v(σ1σ)k1), because σ2 does not change the concerned components; likewise, (v(σ1σ2σ)k1+1,...,v(σ1σ2σ)k1+k2)=(v(σ2σ)k1+1,...,v(σ2σ)k1+k2).

So, Asym(t1t2)((v1,...,vk1+k2))=1/(k1+k2)!σsgnσk1!/k1!σ1sgnσ1t1(v(σ1σ)1,...,v(σ1σ)k1)k2!Asym(t2)(vσk1+1,...,vσk1+k2)=1/(k1+k2)!σsgnσk1!Asym(t1)(vσ1,...,vσk1)k2!Asym(t2)(vσk1+1,...,vσk1+k2).

Step 3:

Let Asym(Asym(t1)t2) operate on (v1,...,vk1+k2).

Asym(Asym(t1)t2)(v1,...,vk1+k2)=1/(k1+k2)!σSk1+k2sgnσAsym(t1)t2(vσ1,...,vσk1+k2).

As before, σ can be expressed as σ1σ2σ.

So, Asym(Asym(t1)t2)(v1,...,vk1+k2)=1/(k1+k2)!σsgnσσ1sgnσ1σ2sgnσ2Asym(t1)t2(v(σ1σ2σ)1,...,v(σ1σ2σ)k1+k2)=1/(k1+k2)!σsgnσσ1sgnσ1Asym(t1)(v(σ1σ2σ)1,...,v(σ1σ2σ)k1)(k2)!/(k2)!σ2sgnσ2t2(v(σ1σ2σ)k1+1,...,v(σ1σ2σ)k1+k2).

=1/(k1+k2)!σsgnσσ1sgnσ1Asym(t1)(v(σ1σ)1,...,v(σ1σ)k1)(k2)!/(k2)!σ2sgnσ2t2(v(σ2σ)k1+1,...,v(σ2σ)k1+k2)=1/(k1+k2)!σsgnσσ1sgnσ1Asym(t1)(v(σ1σ)1,...,v(σ1σ)k1)(k2)!Asym(t2)(vσk1+1,...,vσk1+k2).

Asym(t1)(vσ1σ1,...,vσ1σk1)=sgnσ1Asym(t1)(vσ1,...,vσk1), because Asym(t1) is antisymmetric.

So, =1/(k1+k2)!σsgnσσ1sgnσ1sgnσ1Asym(t1)(vσ1,...,vσk1)(k2)!Asym(t2)(vσk1+1,...,vσk1+k2)=1/(k1+k2)!σsgnσσ1Asym(t1)(vσ1,...,vσk1)(k2)!Asym(t2)(vσk1+1,...,vσk1+k2)=1/(k1+k2)!σsgnσ(k1)!Asym(t1)(vσ1,...,vσk1)(k2)!Asym(t2)(vσk1+1,...,vσk1+k2).

That is the same with the result of Step 2.

So, Asym(t1t2)=Asym(Asym(t1)t2).

Step 4:

Let Asym(t1Asym(t2)) operate on (v1,...,vk1+k2).

Asym(t1Asym(t2))(v1,...,vk1+k2)=1/(k1+k2)!σSk1+k2sgnσt1Asym(t2)(vσ1,...,vσk1+k2).

As before, σ can be expressed as σ1σ2σ.

So, Asym(t1Asym(t2))(v1,...,vk1+k2)=1/(k1+k2)!σsgnσσ1sgnσ1σ2sgnσ2t1Asym(t2)(v(σ1σ2σ)1,...,v(σ1σ2σ)k1+k2)=1/(k1+k2)!σsgnσσ1sgnσ1t1(v(σ1σ2σ)1,...,v(σ1σ2σ)k1)σ2sgnσ2Asym(t2)(v(σ1σ2σ)k1+1,...,v(σ1σ2σ)k1+k2).

=1/(k1+k2)!σsgnσ(k1)!/(k1)!σ1sgnσ1t1(v(σ1σ)1,...,v(σ1σ)k1)σ2sgnσ2Asym(t2)(v(σ2σ)k1+1,...,v(σ2σ)k1+k2)=1/(k1+k2)!σsgnσ(k1)!Asym(t1)(vσ1,...,vσk1)σ2sgnσ2Asym(t2)(v(σ2σ)k1+1,...,v(σ2σ)k1+k2).

Asym(t2)(v(σ2σ)k1+1,...,v(σ2σ)k1+k2)=sgnσ2Asym(t2)(vσk1+1,...,vσk1+k2), because Asym(t2) is antisymmetric.

So, =1/(k1+k2)!σsgnσ(k1)!Asym(t1)(vσ1,...,vσk1)σ2sgnσ2sgnσ2Asym(t2)(vσk1+1,...,vσk1+k2)=1/(k1+k2)!σsgnσ(k1)!Asym(t1)(vσ1,...,vσk1)σ2Asym(t2)(vσk1+1,...,vσk1+k2)=1/(k1+k2)!σsgnσ(k1)!Asym(t1)(vσ1,...,vσk1)(k2)!Asym(t2)(vσk1+1,...,vσk1+k2).

That is the same with the result of Step 2.

So, Asym(t1t2)=Asym(t1Asym(t2)).


References


<The previous article in this series | The table of contents of this series | The next article in this series>