2025-05-11

1113: Antisymmetrization of Tensor Product of Tensors Is Antisymmetrizations Applied Sequentially

<The previous article in this series | The table of contents of this series | The next article in this series>

description/proof of that antisymmetrization of tensor product of tensors is antisymmetrizations applied sequentially

Topics


About: vectors space

The table of contents of this article


Starting Context



Target Context


  • The reader will have a description and a proof of the proposition that the antisymmetrization of the tensor product of any tensors is the antisymmetrizations applied sequentially.

Orientation


There is a list of definitions discussed so far in this site.

There is a list of propositions discussed so far in this site.


Main Body


1: Structured Description


Here is the rules of Structured Description.

Entities:
\(F\): \(\in \{\text{ the fields }\}\)
\(\{V, W\}\): \(\subseteq \{\text{ the } F \text{ vectors spaces }\}\)
\(t_1\): \(\in L (V, ..., V: W)\), where \(V\) appears \(k_1\) times
\(t_2\): \(\in L (V, ..., V: W)\), where \(V\) appears \(k_2\) times
//

Statements:
\(Asym (t_1 \otimes t_2) = Asym (Asym (t_1) \otimes t_2) = Asym (t_1 \otimes Asym (t_2))\)
//


2: Note


By applying this proposition sequentially, \(Asym (t_1 \otimes ... \otimes t_n)\) can be expressed in many ways.

For example, \(Asym (t_1 \otimes t_2 \otimes t_3) = Asym ((t_1 \otimes t_2) \otimes t_3) = Asym (Asym (t_1 \otimes t_2) \otimes t_3) = Asym (Asym (Asym (t_1) \otimes t_2) \otimes t_3)\).

There can be a more general proposition on partial antisymmetrization, but as it seems to become cumbersome and our immediate necessity requires only full antisymmetrizations, this proposition deals with only full antisymmetrizations.


3: Proof


Whole Strategy: Step 1: let \((v_1, ..., v_{k_1 + k_2}) \in V \times ... \times V\) be any; Step 2: let \(Asym (t_1 \otimes t_2)\) operate on \((v_1, ..., v_{k_1 + k_2})\) and expand the result; Step 3: let \(Asym (Asym (t_1) \otimes t_2)\) operate on \((v_1, ..., v_{k_1 + k_2})\) and expand the result; Step 4: let \(Asym (t_1 \otimes Asym (t_2))\) operate on \((v_1, ..., v_{k_1 + k_2})\) and expand the result.

Step 1:

Let \((v_1, ..., v_{k_1 + k_2}) \in V \times ... \times V\) be any.

If some 2 tensors operate on it with the same result, the 2 tensors will be the same.

Step 2:

Let \(Asym (t_1 \otimes t_2)\) operate on \((v_1, ..., v_{k_1 + k_2})\).

\(Asym (t_1 \otimes t_2) ((v_1, ..., v_{k_1 + k_2})) = 1 / (k_1 + k_2)! \sum_{\sigma \in S^{k_1 + k_2}} sgn \sigma t_1 \otimes t_2 (v_{\sigma_1}, ..., v_{\sigma_{k_1 + k_2}})\).

\(\sigma\) can be expressed as \(\sigma_1 \circ \sigma_2 \circ \sigma'\), where \(\sigma'\) is the permutation that permutates \((\sigma_1, ..., \sigma_{k_1})\) and \((\sigma_{k_1 + 1}, ..., \sigma_{k_1 + k_2})\) into the increasing orders after \(\sigma\), and \(\sigma_1\) or \(\sigma_2\) returns \((\sigma'_1, ..., \sigma'_{k_1})\) or \((\sigma'_{k_1 + 1}, ..., \sigma'_{k_1 + k_2})\) back to \((\sigma_1, ..., \sigma_{k_1})\) or \((\sigma_{k_1 + 1}, ..., \sigma_{k_1 + k_2})\), respectively.

The set of \(\sigma_1\) s is practically the symmetric group, \(S^{k_1}\); the set of \(\sigma_2\) s is practically the symmetric group, \(S^{k_2}\).

So, \(\sigma_1 \circ \sigma_2 \circ \sigma'\) means that any \(S^{k_1 + k_2}\) element is 1st, permutating \((1, ..., k_1 + k_2)\) such that \((\sigma'_1, ..., \sigma'_{k_1})\) and \((\sigma'_{k_1 + 1}, ..., \sigma'_{k_1 + k_2})\) are in the increasing orders, and then, permuting \((\sigma'_1, ..., \sigma'_{k_1})\) and \((\sigma'_{k_1 + 1}, ..., \sigma'_{k_1 + k_2})\).

\(sgn \sigma = sgn \sigma_1 sgn \sigma_2 sgn \sigma'\).

So, \(Asym (t_1 \otimes t_2) ((v_1, ..., v_{k_1 + k_2})) = 1 / (k_1 + k_2)! \sum_{\sigma'} sgn \sigma' \sum_{\sigma_1} sgn \sigma_1 \sum_{\sigma_2} sgn \sigma_2 t_1 \otimes t_2 (v_{(\sigma_1 \circ \sigma_2 \circ \sigma')_1}, ..., v_{(\sigma_1 \circ \sigma_2 \circ \sigma')_{k_1 + k_2}}) = 1 / (k_1 + k_2)! \sum_{\sigma'} sgn \sigma' \sum_{\sigma_1} sgn \sigma_1 t_1 (v_{(\sigma_1 \circ \sigma_2 \circ \sigma')_1}, ..., v_{(\sigma_1 \circ \sigma_2 \circ \sigma')_{k_1}}) {k_2}! / {k_2}! \sum_{\sigma_2} sgn \sigma_2 t_2 (v_{(\sigma_1 \circ \sigma_2 \circ \sigma')_{k_1 + 1}}, ..., v_{(\sigma_1 \circ \sigma_2 \circ \sigma')_{k_1 + k_2}})\).

\((v_{(\sigma_1 \circ \sigma_2 \circ \sigma')_1}, ..., v_{(\sigma_1 \circ \sigma_2 \circ \sigma')_{k_1}}) = (v_{(\sigma_1 \circ \sigma')_1}, ..., v_{(\sigma_1 \circ \sigma')_{k_1}})\), because \(\sigma_2\) does not change the concerned components; likewise, \((v_{(\sigma_1 \circ \sigma_2 \circ \sigma')_{k_1 + 1}}, ..., v_{(\sigma_1 \circ \sigma_2 \circ \sigma')_{k_1 + k_2}}) = (v_{(\sigma_2 \circ \sigma')_{k_1 + 1}}, ..., v_{(\sigma_2 \circ \sigma')_{k_1 + k_2}})\).

So, \(Asym (t_1 \otimes t_2) ((v_1, ..., v_{k_1 + k_2})) = 1 / (k_1 + k_2)! \sum_{\sigma'} sgn \sigma' {k_1}! / {k_1}! \sum_{\sigma_1} sgn \sigma_1 t_1 (v_{(\sigma_1 \circ \sigma')_1}, ..., v_{(\sigma_1 \circ \sigma')_{k_1}}) {k_2}! Asym (t_2) (v_{{\sigma'}_{k_1 + 1}}, ..., v_{{\sigma'}_{k_1 + k_2}}) = 1 / (k_1 + k_2)! \sum_{\sigma'} sgn \sigma' {k_1}! Asym (t_1) (v_{{\sigma'}_1}, ..., v_{{\sigma'}_{k_1}}) {k_2}! Asym (t_2) (v_{{\sigma'}_{k_1 + 1}}, ..., v_{{\sigma'}_{k_1 + k_2}})\).

Step 3:

Let \(Asym (Asym (t_1) \otimes t_2)\) operate on \((v_1, ..., v_{k_1 + k_2})\).

\(Asym (Asym (t_1) \otimes t_2) (v_1, ..., v_{k_1 + k_2}) = 1 / (k_1 + k_2)! \sum_{\sigma \in S^{k_1 + k_2}} sgn \sigma Asym (t_1) \otimes t_2 (v_{\sigma_1}, ..., v_{\sigma_{k_1 + k_2}})\).

As before, \(\sigma\) can be expressed as \(\sigma_1 \circ \sigma_2 \circ \sigma'\).

So, \(Asym (Asym (t_1) \otimes t_2) (v_1, ..., v_{k_1 + k_2}) = 1 / (k_1 + k_2)! \sum_{\sigma'} sgn \sigma' \sum_{\sigma_1} sgn \sigma_1 \sum_{\sigma_2} sgn \sigma_2 Asym (t_1) \otimes t_2 (v_{(\sigma_1 \circ \sigma_2 \circ \sigma')_1}, ..., v_{(\sigma_1 \circ \sigma_2 \circ \sigma')_{k_1 + k_2}}) = 1 / (k_1 + k_2)! \sum_{\sigma'} sgn \sigma' \sum_{\sigma_1} sgn \sigma_1 Asym (t_1) (v_{(\sigma_1 \circ \sigma_2 \circ \sigma')_1}, ..., v_{(\sigma_1 \circ \sigma_2 \circ \sigma')_{k_1}}) (k_2)! / (k_2)! \sum_{\sigma_2} sgn \sigma_2 t_2 (v_{(\sigma_1 \circ \sigma_2 \circ \sigma')_{k_1 + 1}}, ..., v_{(\sigma_1 \circ \sigma_2 \circ \sigma')_{k_1 + k_2}})\).

\(= 1 / (k_1 + k_2)! \sum_{\sigma'} sgn \sigma' \sum_{\sigma_1} sgn \sigma_1 Asym (t_1) (v_{(\sigma_1 \circ \sigma')_1}, ..., v_{(\sigma_1 \circ \sigma')_{k_1}}) (k_2)! / (k_2)! \sum_{\sigma_2} sgn \sigma_2 t_2 (v_{(\sigma_2 \circ \sigma')_{k_1 + 1}}, ..., v_{(\sigma_2 \circ \sigma')_{k_1 + k_2}}) = 1 / (k_1 + k_2)! \sum_{\sigma'} sgn \sigma' \sum_{\sigma_1} sgn \sigma_1 Asym (t_1) (v_{(\sigma_1 \circ \sigma')_1}, ..., v_{(\sigma_1 \circ \sigma')_{k_1}}) (k_2)! Asym (t_2) (v_{{\sigma'}_{k_1 + 1}}, ..., v_{{\sigma'}_{k_1 + k_2}})\).

\(Asym (t_1) (v_{{\sigma_1 \circ \sigma'}_1}, ..., v_{{\sigma_1 \circ \sigma'}_{k_1}}) = sgn \sigma_1 Asym (t_1) (v_{{\sigma'}_1}, ..., v_{{\sigma'}_{k_1}})\), because \(Asym (t_1)\) is antisymmetric.

So, \(= 1 / (k_1 + k_2)! \sum_{\sigma'} sgn \sigma' \sum_{\sigma_1} sgn \sigma_1 sgn \sigma_1 Asym (t_1) (v_{{\sigma'}_1}, ..., v_{{\sigma'}_{k_1}}) (k_2)! Asym (t_2) (v_{{\sigma'}_{k_1 + 1}}, ..., v_{{\sigma'}_{k_1 + k_2}}) = 1 / (k_1 + k_2)! \sum_{\sigma'} sgn \sigma' \sum_{\sigma_1} Asym (t_1) (v_{{\sigma'}_1}, ..., v_{{\sigma'}_{k_1}}) (k_2)! Asym (t_2) (v_{{\sigma'}_{k_1 + 1}}, ..., v_{{\sigma'}_{k_1 + k_2}}) = 1 / (k_1 + k_2)! \sum_{\sigma'} sgn \sigma' (k_1)! Asym (t_1) (v_{{\sigma'}_1}, ..., v_{{\sigma'}_{k_1}}) (k_2)! Asym (t_2) (v_{{\sigma'}_{k_1 + 1}}, ..., v_{{\sigma'}_{k_1 + k_2}})\).

That is the same with the result of Step 2.

So, \(Asym (t_1 \otimes t_2) = Asym (Asym (t_1) \otimes t_2)\).

Step 4:

Let \(Asym (t_1 \otimes Asym (t_2))\) operate on \((v_1, ..., v_{k_1 + k_2})\).

\(Asym (t_1 \otimes Asym (t_2)) (v_1, ..., v_{k_1 + k_2}) = 1 / (k_1 + k_2)! \sum_{\sigma \in S^{k_1 + k_2}} sgn \sigma t_1 \otimes Asym (t_2) (v_{\sigma_1}, ..., v_{\sigma_{k_1 + k_2}})\).

As before, \(\sigma\) can be expressed as \(\sigma_1 \circ \sigma_2 \circ \sigma'\).

So, \(Asym (t_1 \otimes Asym (t_2)) (v_1, ..., v_{k_1 + k_2}) = 1 / (k_1 + k_2)! \sum_{\sigma'} sgn \sigma' \sum_{\sigma_1} sgn \sigma_1 \sum_{\sigma_2} sgn \sigma_2 t_1 \otimes Asym (t_2) (v_{(\sigma_1 \circ \sigma_2 \circ \sigma')_1}, ..., v_{(\sigma_1 \circ \sigma_2 \circ \sigma')_{k_1 + k_2}}) = 1 / (k_1 + k_2)! \sum_{\sigma'} sgn \sigma' \sum_{\sigma_1} sgn \sigma_1 t_1 (v_{(\sigma_1 \circ \sigma_2 \circ \sigma')_1}, ..., v_{(\sigma_1 \circ \sigma_2 \circ \sigma')_{k_1}}) \sum_{\sigma_2} sgn \sigma_2 Asym (t_2) (v_{(\sigma_1 \circ \sigma_2 \circ \sigma')_{k_1 + 1}}, ..., v_{(\sigma_1 \circ \sigma_2 \circ \sigma')_{k_1 + k_2}})\).

\(= 1 / (k_1 + k_2)! \sum_{\sigma'} sgn \sigma' (k_1)! / (k_1)! \sum_{\sigma_1} sgn \sigma_1 t_1 (v_{(\sigma_1 \circ \sigma')_1}, ..., v_{(\sigma_1 \circ \sigma')_{k_1}}) \sum_{\sigma_2} sgn \sigma_2 Asym (t_2) (v_{(\sigma_2 \circ \sigma')_{k_1 + 1}}, ..., v_{(\sigma_2 \circ \sigma')_{k_1 + k_2}}) = 1 / (k_1 + k_2)! \sum_{\sigma'} sgn \sigma' (k_1)! Asym (t_1) (v_{{\sigma'}_1}, ..., v_{{\sigma'}_{k_1}}) \sum_{\sigma_2} sgn \sigma_2 Asym (t_2) (v_{(\sigma_2 \circ \sigma')_{k_1 + 1}}, ..., v_{(\sigma_2 \circ \sigma')_{k_1 + k_2}})\).

\(Asym (t_2) (v_{(\sigma_2 \circ \sigma')_{k_1 + 1}}, ..., v_{(\sigma_2 \circ \sigma')_{k_1 + k_2}}) = sgn \sigma_2 Asym (t_2) (v_{{\sigma'}_{k_1 + 1}}, ..., v_{{\sigma'}_{k_1 + k_2}})\), because \(Asym (t_2)\) is antisymmetric.

So, \(= 1 / (k_1 + k_2)! \sum_{\sigma'} sgn \sigma' (k_1)! Asym (t_1) (v_{{\sigma'}_1}, ..., v_{{\sigma'}_{k_1}}) \sum_{\sigma_2} sgn \sigma_2 sgn \sigma_2 Asym (t_2) (v_{{\sigma'}_{k_1 + 1}}, ..., v_{{\sigma'}_{k_1 + k_2}}) = 1 / (k_1 + k_2)! \sum_{\sigma'} sgn \sigma' (k_1)! Asym (t_1) (v_{{\sigma'}_1}, ..., v_{{\sigma'}_{k_1}}) \sum_{\sigma_2} Asym (t_2) (v_{{\sigma'}_{k_1 + 1}}, ..., v_{{\sigma'}_{k_1 + k_2}}) = 1 / (k_1 + k_2)! \sum_{\sigma'} sgn \sigma' (k_1)! Asym (t_1) (v_{{\sigma'}_1}, ..., v_{{\sigma'}_{k_1}}) (k_2)! Asym (t_2) (v_{{\sigma'}_{k_1 + 1}}, ..., v_{{\sigma'}_{k_1 + k_2}})\).

That is the same with the result of Step 2.

So, \(Asym (t_1 \otimes t_2) = Asym (t_1 \otimes Asym (t_2))\).


References


<The previous article in this series | The table of contents of this series | The next article in this series>