2025-01-12

946: Product Vectors Space

<The previous article in this series | The table of contents of this series | The next article in this series>

definition of product vectors space

Topics


About: vectors space

The table of contents of this article


Starting Context



Target Context


  • The reader will have a definition of product vectors space.

Orientation


There is a list of definitions discussed so far in this site.

There is a list of propositions discussed so far in this site.


Main Body


1: Structured Description 1


Here is the rules of Structured Description.

Entities:
J: { the possibly uncountable index sets }
F: { the fields }
{Vj|jJ}: { the F vectors spaces }
×jJVj: = the product set , { the F vectors spaces }, with the operations specified below
//

Conditions:
rF,f×jJVj(jJ((rf)(j)=r(f(j))))

f,f×jJVj(jJ((f+f)(j)=f(j)+f(j)))
//


2: Structured Description 2


Here is the rules of Structured Description.

Entities:
F: { the fields }
{V1,...,Vk}: { the F vectors spaces }
V1×...×Vk: = the product set , { the F vectors spaces }, with the operations specified below
//

Conditions:
rF,v=(v1,...,vk)V1×...×Vk(rv=(rv1,...,rvk))

v=(v1,...,vk),v=(v1,...,vk)V1×...×Vk(v+v=(v1+v1,...,vk+vk))
//


3: Note


Let us see that ×jJVj is indeed an F vectors space.

1) for any elements, f,f×jJVj, f+f×jJVj (closed-ness under addition): for each jJ, (f+f)(j)=f(j)+f(j)Vj.

2) for any elements, f,f×jJVj, f+f=f+f (commutativity of addition): for each jJ, (f+f)(j)=f(j)+f(j)=f(j)+f(j)=(f+f)(j).

3) for any elements, f,f,f×jJVj, (f+f)+f=f+(f+f) (associativity of additions): for each jJ, ((f+f)+f)(j)=(f+f)(j)+f(j)=f(j)+f(j)+f(j)=f(j)+(f+f)(j)=(f+(f+f))(j).

4) there is a 0 element, 0×jJVj, such that for any f×jJVj, f+0=f (existence of 0 vector): f0×jJVj such that for each jJ, f0(j)=0, is 0, because (f+f0)(j)=f(j)+f0(j)=f(j).

5) for any element, f×jJVj, there is an inverse element, f×jJVj, such that f+f=0 (existence of inverse vector): f×jJVj such that for each jJ, f(j)=f(j), is such a one, because (f+f)(j)=f(j)+f(j)=f(j)+f(j)=0.

6) for any element, f×jJVj, and any scalar, rF, r.f×jJVj (closed-ness under scalar multiplication): (r.f)(j)=rf(j)Vj.

7) for any element, f×jJVj, and any scalars, r1,r2F, (r1+r2).f=r1.f+r2.f (scalar multiplication distributability for scalars addition): for each jJ, ((r1+r2).f)(j)=(r1+r2)f(j)=r1f(j)+r2f(j)=(r1f)(j)+(r2f)(j)=(r1.f+r2.f)(j).

8) for any elements, f,f×jJVj, and any scalar, rF, r.(f+f)=r.f+r.f (scalar multiplication distributability for vectors addition): for each jJ, (r.(f+f))(j)=r(f+f)(j)=r(f(j)+f(j))=rf(j)+rf(j)=(rf)(j)+(rf)(j)=(r.f+r.f)(j).

9) for any element, f×jJVj, and any scalars, r1,r2F, (r1r2).f=r1.(r2.f) (associativity of scalar multiplications): for each jJ, ((r1r2).f)(j)=(r1r2)f(j)=r1(r2f(j))=r1((r2f)(j))=(r1.(r2.f))(j).

10) for any element, f×jJVj, 1.f=f (identity of 1 multiplication): for each jJ, (1.f)(j)=1.(f(j))=f(j).

Let us see that V1×...×Vk is indeed an F vectors space.

1) for any elements, v,vV1×...×Vk, v+vV1×...×Vk (closed-ness under addition): for v=(v1,...,vk) and v=(v1,...,vk), v+v=(v1+v1,...,vk+vk)V1×...×Vk.

2) for any elements, v,vV1×...×Vk, v+v=v+v (commutativity of addition): for v=(v1,...,vk) and v=(v1,...,vk), v+v=(v1,...,vk)+(v1,...,vk)=(v1+v1,...,vk+vk)=(v1+v1,...,vk+vk)=(v1,...,vk)+(v1,...,vk)=v+v.

3) for any elements, v,v,vV1×...×Vk, (v+v)+v=v+(v+v) (associativity of additions): for v=(v1,...,vk), v=(v1,...,vk), and v=(v1,...,vk), (v+v)+v=(v1+v1,...,vk+vk)+(v1,...,vk)=(v1+v1+v1,...,vk+vk+vk)=(v1,...,vk)+(v1+v1,...,vk+vk)=v+(v+v).

4) there is a 0 element, 0V1×...×Vk, such that for any vV1×...×Vk, v+0=v (existence of 0 vector): v0=(0,...,0)V1×...×Vk is 0, because for v=(v1,...,vk), v0+v=(0+v1,...,0+vk)=(v1,...,vk)=v.

5) for any element, vV1×...×Vk, there is an inverse element, vV1×...×Vk, such that v+v=0 (existence of inverse vector): for v=(v1,...,vk), v=(v1,...,vk)V1×...×Vk is a one, because v+v=(v1,...,vk)+(v1,...,vk)=(v1+v1,...,vk+vk)=(0,...,0)=0.

6) for any element, vV1×...×Vk, and any scalar, rF, r.vV1×...×Vk (closed-ness under scalar multiplication): for v=(v1,...,vk), r.v=(rv1,...,rvk)V1×...×Vk.

7) for any element, vV1×...×Vk, and any scalars, r1,r2F, (r1+r2).v=r1.v+r2.v (scalar multiplication distributability for scalars addition): for v=(v1,...,vk), (r1+r2).v=((r1+r2)v1,...,(r1+r2)vk)=(r1v1+r2v1,...,r1vk+r2vk)=(r1v1,...,r1vk)+(r2v1,...,r2vk)=r1(v1,...,vk)+r2(v1,...,vk)=r1.v1+r2.v2.

8) for any elements, v,vV1×...×Vk, and any scalar, rF, r.(v+v)=r.v+r.v (scalar multiplication distributability for vectors addition): for v=(v1,...,vk) and v=(v1,...,vk), r.(v+v)=r(v1+v1,...,vk+vk)=(r(v1+v1),...,r(vk+vk))=(rv1+rv1,...,rvk+rvk)=(rv1,...,rvk)+(rv1,...,rvk)=r(v1,...,vk)+r(v1,...,vk)=r.v+r.v.

9) for any element, vV1×...×Vk, and any scalars, r1,r2F, (r1r2).v=r1.(r2.v) (associativity of scalar multiplications): for v=(v1,...,vk), (r1r2).v=((r1r2)v1,...,(r1r2)vk)=(r1(r2v1),...,r1(r2vk))=r1(r2v1,...,r2vk)=r1.(r2.v).

10) for any element, vV1×...×Vk, 1.v=v (identity of 1 multiplication): for v=(v1,...,vk), 1.v=(1v1,...,1vk)=(v1,...,vk)=v.


References


<The previous article in this series | The table of contents of this series | The next article in this series>