2024-10-13

816: Contraction of 2 Same-Length Multi-Dimensional Arrays One of Which Is Symmetrized or Antisymmetrized w.r.t. Set of Indexes Is Contraction with Also Other Array Symmetrized or Antisymmetrized Accordingly

<The previous article in this series | The table of contents of this series | The next article in this series>

description/proof of that contraction of 2 same-length multi-dimensional arraysame-length multi-dimensional arrays one of which is symmetrized or antisymmetrized w.r.t. set of indexes is contraction with also other array symmetrized or antisymmetrized accordingly

Topics


About: set

The table of contents of this article


Starting Context



Target Context


  • The reader will have a description and a proof of the proposition that the contraction of any 2 same-length multi-dimensional arrays one of which is symmetrized or antisymmetrized with respect to any set of indexes is the contraction with also the other array symmetrized or antisymmetrized accordingly.

Orientation


There is a list of definitions discussed so far in this site.

There is a list of propositions discussed so far in this site.


Main Body


0: Note 1


Any \(n\)-length 2-dimensional array is an \(n \times n\) matrix.

The components of any \((p-q)\) tensor with respect to any bases is a vectors-space-dimension-length (p + q)-dimensional array, but a same-length multi-dimensional array is not necessarily the components of a tensor: a same-length multi-dimensional array is in general just a collection of numbers not necessarily related to any tensor.

The dimensions of the same-length multi-dimensional array have to have the same length for our purpose, because otherwise, a permutation of indexes would not make sense.


1: Structured Description


Here is the rules of Structured Description.

Entities:
\(n\): \(\in \mathbb{N}\), \(2 \le n \lt \infty\)
\(M\): \(\in \{\text{ the same-length } n \text{ -dimensional arrays }\}\), \(= \begin{pmatrix} M_{j_1, ..., j_n} \end{pmatrix}\)
\(N\): \(\in \{\text{ the same-length } n \text{ -dimensional arrays }\}\), \(= \begin{pmatrix} N_{j_1, ..., j_n} \end{pmatrix}\)
\(S\): \(= \{l_1, ..., l_k\} \subseteq \{1, ..., n\}\)
\(M'\): \(= M \text{ symmetrized with respect to } S\), \(= \begin{pmatrix} M'_{j_1, ..., j_n} \end{pmatrix}\)
\(M''\): \(= M \text{ antisymmetrized with respect to } S\), \(= \begin{pmatrix} M''_{j_1, ..., j_n} \end{pmatrix}\)
\(N'\): \(= N \text{ symmetrized with respect to } S\), \(= \begin{pmatrix} N'_{j_1, ..., j_n} \end{pmatrix}\)
\(N''\): \(= N \text{ antisymmetrized with respect to } S\), \(= \begin{pmatrix} N''_{j_1, ..., j_n} \end{pmatrix}\)
//

Statements:
\(\sum_{(j_1, ..., j_n)} N_{j_1, ..., j_n} M'_{j_1, ..., j_n} = \sum_{(j_1, ..., j_n)} N'_{j_1, ..., j_n} M'_{j_1, ..., j_n}\).
\(\land\)
\(\sum_{(j_1, ..., j_n)} N_{j_1, ..., j_n} M''_{j_1, ..., j_n} = \sum_{(j_1, ..., j_n)} N''_{j_1, ..., j_n} M''_{j_1, ..., j_n}\).
//


2: Natural Language Description


For any same-length \(n\)-dimensional arrays, \(M = \begin{pmatrix} M_{j_1, ..., j_n} \end{pmatrix}, N = \begin{pmatrix} N_{j_1, ..., j_n} \end{pmatrix}\), where \(2 \le n \lt \infty\), any subset, \(S = \{l_1, ..., l_k\} \subseteq \{1, ..., n\}\), \(M\) symmetrized with respect to \(S\), \(M' = \begin{pmatrix} M'_{j_1, ..., j_n} \end{pmatrix}\), \(M\) antisymmetrized with respect to \(S\), \(M'' = \begin{pmatrix} M''_{j_1, ..., j_n} \end{pmatrix}\), \(N\) symmetrized with respect to \(S\), \(N' = \begin{pmatrix} N'_{j_1, ..., j_n} \end{pmatrix}\), and \(N\) antisymmetrized with respect to \(S\), \(N'' = \begin{pmatrix} N''_{j_1, ..., j_n} \end{pmatrix}\), \(\sum_{(j_1, ..., j_n)} N_{j_1, ..., j_n} M'_{j_1, ..., j_n} = \sum_{(j_1, ..., j_n)} N'_{j_1, ..., j_n} M'_{j_1, ..., j_n}\) and \(\sum_{(j_1, ..., j_n)} N_{j_1, ..., j_n} M''_{j_1, ..., j_n} = \sum_{(j_1, ..., j_n)} N''_{j_1, ..., j_n} M''_{j_1, ..., j_n}\).


3: Proof


Whole Strategy: Step 1: see that for \(X := \sum_{(j_1, ..., j_n)} N_{j_1, ..., j_n} M'_{j_1, ..., j_n}\) and each permutation of \((j_1, ..., j_n)\) such that only \((j_{l_1}, ..., j_{l_k})\) is permutated, \(\sigma\), \(X = \sum_{(j_1, ..., j_n)} N_{\sigma ((j_1, ..., j_n))_1, ..., \sigma ((j_1, ..., j_n))_n} M'_{j_1, ..., j_n}\); Step 2: take \(X = 1 / k! \sum_{\sigma} X\) and see that \(X = \sum_{(j_1, ..., j_n)} N'_{j_1, ..., j_n} M'_{j_1, ..., j_n}\); Step 3: see that for \(X := \sum_{(j_1, ..., j_n)} N_{j_1, ..., j_n} M''_{j_1, ..., j_n}\) and each permutation of \((j_1, ..., j_n)\) such that only \((j_{l_1}, ..., j_{l_k})\) is permutated, \(\sigma\), \(X = \sum_{(j_1, ..., j_n)} N_{\sigma ((j_1, ..., j_n))_1, ..., \sigma ((j_1, ..., j_n))_n} sgn \sigma M''_{j_1, ..., j_n}\); Step 4: take \(X = 1 / k! \sum_{\sigma} X\) and see that \(X = \sum_{(j_1, ..., j_n)} N''_{j_1, ..., j_n} M''_{j_1, ..., j_n}\).

Step 1:

Let \(\sigma\) be any permutation of \((j_1, ..., j_n)\) such that only \((j_{l_1}, ..., j_{l_k})\) is permutated.

Let \(X := \sum_{(j_1, ..., j_n)} N_{j_1, ..., j_n} M'_{j_1, ..., j_n}\).

For any fixed \(\sigma\), \(X = \sum_{(j_1, ..., j_n)} N_{\sigma ((j_1, ..., j_n))_1, ..., \sigma ((j_1, ..., j_n))_n} M'_{\sigma ((j_1, ..., j_n))_1, ..., \sigma ((j_1, ..., j_n))_n}\), by the proposition that for the set of all the sequences for any fixed domain and any fixed codomain, any permutation bijectively maps the set onto the set.

\(= \sum_{(j_1, ..., j_n)} N_{\sigma ((j_1, ..., j_n))_1, ..., \sigma ((j_1, ..., j_n))_n} M'_{j_1, ..., j_n}\), because \(M'\) is symmetrized.

Step 2:

While there are \(k!\) such \(\sigma\) s, \(X = 1 / k! \sum_{\sigma} X = 1 / k! \sum_{\sigma} \sum_{(j_1, ..., j_n)} N_{\sigma ((j_1, ..., j_n))_1, ..., \sigma ((j_1, ..., j_n))_n} M'_{j_1, ..., j_n} = \sum_{(j_1, ..., j_n)} 1 / k! \sum_{\sigma} N_{\sigma ((j_1, ..., j_n))_1, ..., \sigma ((j_1, ..., j_n))_n} M'_{j_1, ..., j_n} = \sum_{(j_1, ..., j_n)} N'_{j_1, ..., j_n} M'_{j_1, ..., j_n}\).

Step 3:

Let \(X := \sum_{(j_1, ..., j_n)} N_{j_1, ..., j_n} M''_{j_1, ..., j_n}\).

For any fixed \(\sigma\), \(X = \sum_{(j_1, ..., j_n)} N_{\sigma ((j_1, ..., j_n))_1, ..., \sigma ((j_1, ..., j_n))_n} M''_{\sigma ((j_1, ..., j_n))_1, ..., \sigma ((j_1, ..., j_n))_n}\), by the proposition that for the set of all the sequences for any fixed domain and any fixed codomain, any permutation bijectively maps the set onto the set.

\(= \sum_{(j_1, ..., j_n)} N_{\sigma ((j_1, ..., j_n))_1, ..., \sigma ((j_1, ..., j_n))_n} sgn \sigma M''_{j_1, ..., j_n}\), because \(M''\) is antisymmetrized.

Step 4:

While there are \(k!\) such \(\sigma\) s, \(X = 1 / k! \sum_{\sigma} X = 1 / k! \sum_{\sigma} \sum_{(j_1, ..., j_n)} N_{\sigma ((j_1, ..., j_n))_1, ..., \sigma ((j_1, ..., j_n))_n} sgn \sigma M''_{j_1, ..., j_n} = \sum_{(j_1, ..., j_n)} 1 / k! \sum_{\sigma} sgn \sigma N_{\sigma ((j_1, ..., j_n))_1, ..., \sigma ((j_1, ..., j_n))_n} M''_{j_1, ..., j_n} = \sum_{(j_1, ..., j_n)} N''_{j_1, ..., j_n} M''_{j_1, ..., j_n}\).


4: Note 2


These of course hold.

\(\sum_{(j_1, ..., j_n)} M'_{j_1, ..., j_n} N_{j_1, ..., j_n} = \sum_{(j_1, ..., j_n)} M'_{j_1, ..., j_n} N'_{j_1, ..., j_n}\).

\(\sum_{(j_1, ..., j_n)} M''_{j_1, ..., j_n} N_{j_1, ..., j_n} = \sum_{(j_1, ..., j_n)} M''_{j_1, ..., j_n} N''_{j_1, ..., j_n}\).

\(\sum_{(j_1, ..., j_n)} N_{j_1, ..., j_n} M'_{j_1, ..., j_n} = \sum_{(j_1, ..., j_n)} N'_{j_1, ..., j_n} M_{j_1, ..., j_n}\), because \(\sum_{(j_1, ..., j_n)} N'_{j_1, ..., j_n} M_{j_1, ..., j_n} = \sum_{(j_1, ..., j_n)} N'_{j_1, ..., j_n} M'_{j_1, ..., j_n}\).

\(\sum_{(j_1, ..., j_n)} N_{j_1, ..., j_n} M''_{j_1, ..., j_n} = \sum_{(j_1, ..., j_n)} N''_{j_1, ..., j_n} M_{j_1, ..., j_n}\), because \(\sum_{(j_1, ..., j_n)} N''_{j_1, ..., j_n} M_{j_1, ..., j_n} = \sum_{(j_1, ..., j_n)} N''_{j_1, ..., j_n} M''_{j_1, ..., j_n}\).


References


<The previous article in this series | The table of contents of this series | The next article in this series>