2024-07-28

695: Memorandum on Powers of Group, Ring, or Field Elements

<The previous article in this series | The table of contents of this series | The next article in this series>

description/proof of memorandum on powers of group, ring, or field elements

Topics


About: group
About: ring
About: field

The table of contents of this article


Starting Context



Target Context


  • The reader will have a description and a proof of a memorandum on powers of group, ring, or field elements.

Orientation


There is a list of definitions discussed so far in this site.

There is a list of propositions discussed so far in this site.


Main Body


1: Structured Description


Here is the rules of Structured Description.

Entities:
G: { the groups }
R: { the rings }
F: { the fields }
//

Statements:
pG,zZ(pz is valid )

pR,nN(pn is valid )

pF,nN(pn is valid )

pF such that p0,zZ(pz is valid )

pG,z,zZ(pzpz=pz+z)

pR,n,nN(pnpn=pn+n)

pF,n,nN(pnpn=pn+n)

pF such that p0,z,zZ(pzpz=pz+z)

pG,z,zZ((pz)z=pzz)

pR,n,nN((pn)n=pnn)

pF,n,nN((pn)n=pnn)

pF such that p0,z,zZ((pz)z=pzz)

pG,zZ,nN such that 1n(p(zn)=(pz)zn1)

pR,n,nN such that 1n(p(nn)=(pn)nn1)

pF,n,nN such that 1n(p(nn)=(pn)nn1)

pF such that p0,zZ,nN such that 1n(p(zn)=(pz)zn1)

pG,zZ,nN,nN such that 1n(p(znn)=(p(zn))znnn)

pR,n,n,nN such that 1n(p(nnn)=(p(nn))nnnn)

pF,n,n,nN such that 1n(p(nnn)=(p(nn))nnnn)

pF such that p0,zZ,nN,nN such that 1n(p(znn)=(p(zn))znnn)
//


2: Natural Language Description


For any group, G, any ring, R, and any field, F, pG,zZ(pz is valid ), pR,nN(pn is valid ), pF,nN(pn is valid ), pF such that p0,zZ(pz is valid ), pG,z,zZ(pzpz=pz+z), pR,n,nN(pnpn=pn+n), pF,n,nN(pnpn=pn+n), pF such that p0,z,zZ(pzpz=pz+z), pG,z,zZ((pz)z=pzz), pR,n,nN((pn)n=pnn), pF,n,nN((pn)n=pnn), pF such that p0,z,zZ((pz)z=pzz), pG,zZ,nN such that 1n(p(zn)=(pz)zn1), pR,n,nN such that 1n(p(nn)=(pn)nn1), pF,n,nN such that 1n(p(nn)=(pn)nn1), pF such that p0,zZ,nN such that 1n(p(zn)=(pz)zn1), pG,zZ,nN,nN such that 1n(p(znn)=(p(zn))znnn), pR,n,n,nN such that 1n(p(nnn)=(p(nn))nnnn), pF,n,n,nN such that 1n(p(nnn)=(p(nn))nnnn), pF such that p0,zZ,nN,nN such that 1n(p(znn)=(p(zn))znnn).


3: Note


Of course, those facts are straightforward to think carefully, but some careless confusions can happen making some confusions with powers of real numbers. So, such a memorandum will be handy.


4: Proof


Let us prove that pG,zZ(pz is valid ).

For z=0, pz=1G.

For 0<z, pz=p...pG, where the multiplications are z-times.

For z<0, pz=p1...p1G, where the multiplications are z-times.

On the other hand, for a qQ, pq may not be valid.

For example, for q=1/2, what does pq mean? x=p1/2 should mean that x2=p, but there may not be such an xG.

And the power cannot be any element of G: what does pp mean for a pG?

Let us prove that pR,nN(pn is valid ).

For n=0, p0=1R.

For 0<n, pn=p...pR, where the multiplications are n-times.

On the other hand, for a zZ such that z<0, pz may not be valid.

That is because there may not be any p1.

For a qQ, pq may not be valid.

The reason is as before.

And the power cannot be any element of R as before.

Let us prove that pF,nN(pn is valid ).

For n=0, pn=1F.

For 0<n, pn=p...pF, where the multiplications are n-times.

On the other hand, for any zZ such that z<0 and p=0, pz is not valid.

That is because p1 does not exist.

Let us prove that pF such that p0,zZ(pz is valid ).

For z=0, pz=1F.

For 0<z, pz=p...pF, where the multiplications are z-times.

For z<0, pz=p1...p1F, where the multiplications are z-times, which is possible because p0.

On the other hand, for a qQ, pq may not be valid.

For example, for q=1/2, what does pq mean? x=p1/2 should mean that x2=p, but there may not be such an xF. Note that when F=R, pq exists, but that is not for general field. For example, when F=Q, 21/2F does not exist.

And the power cannot be any element of F as before. Note that when F=R, the power can be any element of F, but that is not because R is a field.

Let us prove that pG,z,zZ(pzpz=pz+z).

When z=0, pzpz=1pz=pz=pz+z.

When z=0, pzpz=pz1=pz=pz+z.

When 0<z,z, pzpz=p...pp...p=pz+z.

When 0<z and z<0, pzpz=p...pp1...p1=pz+z.

When z<0 and 0<z, pzpz=p1...p1p...p=pz+z.

When z,z<0, pzpz=p1...p1p1...p1=pz+z.

Let us prove that pR,n,nN(pnpn=pn+n).

When n=0, pnpn=1pn=pn=pn+n.

When n=0, pnpn=pn1=pn=pn+n.

When 0<n,n, pnpn=p...pp...p=pn+n.

A proof of pF,n,nN(pnpn=pn+n) is the same with the ring case.

A proof of pF such that p0,z,zZ(pzpz=pz+z) is the same with the group case.

Let us prove that pG,z,zZ((pz)z=pzz).

When z=0, (pz)z=1=pzz.

When 0<z, (pz)z=pz...pz=pz+...+z=pzz.

When z<0, (pz)z=(pz)1...(pz)1; when z=0, =11...11=1=pzz; when 0<z, =(p...p)1...(p...p)1=(p1...p1)...(p1...p1)=pzz; when z<0, =(p1...p1)1...(p1...p1)1=(p...p)...(p...p)=pzz.

Let us prove that pR,n,nN((pn)n=pnn).

When n=0, (pn)n=1=pnn.

When 0<n, (pn)n=pn...pn=pn+...+n=pnn.

A proof of pF,n,nN((pn)n=pnn) is the same with the ring case.

A proof of pF such that p0,z,zZ((pz)z=pzz) is the same with the group case. Note that (pz)z makes sense because pz0: any field is an integral domain.

Let us prove that pG,zZ,nN such that 1n(p(zn)=(pz)zn1).

It makes sense, because while Z is a ring, znZ, p(zn)G; pzG, zn1Z, and (pz)zn1G.

p(zn)=p(zzn1)=(pz)zn1.

Of course, p(zn)(pz)n in general.

Let us prove that pR,n,nN such that 1n(p(nn)=(pn)nn1).

It makes sense, because as nnN, p(nn)R; pnR, nn1N, and (pn)nn1R.

p(nn)=p(nnn1)=(pn)nn1.

A proof of pF,n,nN such that 1n(p(nn)=(pn)nn1) is the same with the ring case.

A proof of pF such that p0,zZ,nN such that 1n(p(zn)=(pz)zn1) is the same with the group case. Note that (pz)zn1 makes sense, because pz0: any field is an integral domain.

Let us prove that pG,zZ,nN,nN such that 1n(p(znn)=(p(zn))znnn).

It makes sense, because nnN, znnZ, p(znn)G; znZ, p(zn)G, nnn=n(n1)N, znnnZ, and (p(zn))znnnG.

p(znn)=p(zn+nnn)=p(znznnn)=(p(zn))znnn.

Let us prove that pR,n,n,nN such that 1n(p(nnn)=(p(nn))nnnn).

It makes sense, because nnN, nnnN, p(nnn)R; nnN, p(nn)R, nnn=n(n1)N, nnnnN, and (p(nn))nnnnR.

p(nnn)=p(nn+nnn)=p(nnnnnn)=(p(nn))nnnn.

A proof of pF,n,n,nN such that 1n(p(nnn)=(p(nn))nnnn) is the same with the ring case.

A proof of pF such that p0,zZ,nN,nN such that 1n(p(znn)=(p(zn))znnn) is the same with the group case.


References


<The previous article in this series | The table of contents of this series | The next article in this series>