2023-06-04

292: For Monotone Operation from Ordinal Numbers Collection into Ordinal Numbers Collection, Value Equals or Contains Argument

<The previous article in this series | The table of contents of this series | The next article in this series>

A description/proof of that for monotone operation from ordinal numbers collection into ordinal numbers collection, value equals or contains argument

Topics


About: set

The table of contents of this article


Starting Context



Target Context


  • The reader will have a description and a proof of the proposition that for any monotone operation from the all the ordinal numbers collection into the all the ordinal numbers collection and any argument, the value equals or contains the argument.

Orientation


There is a list of definitions discussed so far in this site.

There is a list of propositions discussed so far in this site.


Main Body


1: Description


For any monotone operation, \(f: O \rightarrow O\), from the all the ordinal numbers collection into the all the ordinal numbers collection where \(O\) is the all the ordinal numbers collection and any argument, \(o \in O\), \(o \in= f (o)\) where \(\in=\) means being \(\in\) or \(=\).


2: Proof


\(0 \in= f (0)\).

Let us suppose that for any \(o_0 \in O\), for any \(o_1 \in o_0\), \(o_1 \in= f (o_1)\). Then, \(o_0 \in= f (o_0)\)?

Let us suppose that \(o_0\) is a successor ordinal number, \(o_0 = {o_2}^+\). \(o_2 \in o_0\), so, \(o_2 \in= f (o_2)\). If \(o_2 \in f (o_2)\), \({o_2}^+ \in= f (o_2)\), but \(f (o_2) \in f ({o_2}^+)\), so, \({o_2}^+ \in f ({o_2}^+)\). If \(o_2 = f (o_2)\), \({o_2}^+ = (f (o_2))^+\), but \((f (o_2))^+ \in= f ({o_2}^+)\), so, \({o_2}^+ \in= f ({o_2}^+)\).

Let us suppose that \(o_0\) is a limit ordinal number. \(o_0 = \cup \{o\vert o \in o_0\}\). \(f (o) \in f (o_0)\) for any \(o \in o_0\). \(sup \{f (o)\vert o \in o_0\} \in= f (o_0)\), because \(f (o_0)\) is an upper bound of \(\{f (o)\vert o \in o_0\}\). \(o_0 = sup \{o\vert o \in o_0\}\) by the way. As \(o \in= f (o)\), \(sup \{o\vert o \in o_0\} \in= sup \{f (o)\vert o \in o_0\}\). \(o_0 = sup \{o\vert o \in o_0\} \in= sup \{f (o)\vert o \in o_0\} \in= f (o_0)\).

So, yes for the question.

By the transfinite induction principle, \(o_0 \in= f (o_0)\) for any ordinal number, \(o_0 \in O\).


References


<The previous article in this series | The table of contents of this series | The next article in this series>