2022-02-20

31: Lie Algebra

<The previous article in this series | The table of contents of this series | The next article in this series>

definition of Lie algebra

Topics


About: Lie algebra

The table of contents of this article


Starting Context



Target Context


  • The reader will have a definition of Lie algebra.

Orientation


There is a list of definitions discussed so far in this site.

There is a list of propositions discussed so far in this site.


Main Body


1: Structured Description


Here is the rules of Structured Description.

Entities:
\(F\): \(\in \{\text{ the fields }\}\)
\(V\): \(\in \{\text{ the vectors spaces over } F\}\), with \([\bullet, \bullet]: V \times V \to V\)
//

Conditions:
\(\forall v_1, v_2, v_3 \in V, \forall r_1, r_2 \in F\)
(
1) \([r_1 v_1 + r_2 v_2, v_3] = r_1 [v_1, v_3] + r_2 [v_2, v_3]\) \(\land\) \([v_3, r_1 v_1 + r_2 v_2] = r_1 [v_3, v_1] + r_2 [v_3, v_2]\)
\(\land\)
2) \([v_2, v_1] = - [v_1, v_2]\)
\(\land\)
3) \(\sum_{cyclic} [v_1, [v_2, v_3]] = 0\)
)
//


2: Natural Language Description


Any vectors space, \(V\), over any field, \(F\), with any bracket, \([\bullet, \bullet]: V \times V \to V\), such that for any \(v_1, v_2, v_3 \in V\) and any \(r_1, r_2 \in F\), 1) \([r_1 v_1 + r_2 v_2, v_3] = r_1 [v_1, v_3] + r_2 [v_2, v_3]\) and \([v_3, r_1 v_1 + r_2 v_2] = r_1 [v_3, v_1] + r_2 [v_3, v_2]\); 2) \([v_2, v_1] = - [v_1, v_2]\) 3) \(\sum_{cyclic} [v_1, [v_2, v_3]] = 0\)


3: Note


Lie algebra is not necessarily really an algebra, because the associative-ness, \([ [v_1, v_2], v_3] = [v_1, [v_2, v_3]]\), is not guaranteed to hold.


References


<The previous article in this series | The table of contents of this series | The next article in this series>