2022-02-06

25: Chain Rule for Derivative of Composition of C^1, Euclidean-Normed Euclidean Vectors Spaces Maps

<The previous article in this series | The table of contents of this series | The next article in this series>

description/proof of the chain rule for derivative of composition of C1, Euclidean-normed Euclidean vectors spaces maps

Topics


About: normed vectors space

The table of contents of this article


Starting Context



Target Context


  • The reader will have a description and a proof of the chain rule for derivative of composition map of C1, Euclidean-normed Euclidean vectors spaces maps.

Orientation


There is a list of definitions discussed so far in this site.

There is a list of propositions discussed so far in this site.


Main Body


1: Description


For any Euclidean-normed Euclidean vectors spaces, Rd1, Rd2, and Rd3, any C1 maps, f1:Rd1Rd2 and f2:Rd2Rd3, and the composition map, f3:Rd1Rd3, such that f3=f2(f1), the derivative of f3, Df3, is Df2Df1.


2: Proof


For any vectors, v1,1,v1,2Rd1, f3(v1,1+v1,2)=f2(f1(v1,1+v1,2))=f2(f1(v1,1)+f1(v1,1)v1,2+r1(v1,1,v1,2))=f2(f1(v1,1))+f2(f1(v1,1))(f1(v1,1)v1,2+r1(v1,1,v1,2))+r2(f1(v1,1),f1(v1,1)v1,2+r1(v1,1,v1,2)):=V1. As f2 is linear, V1=f2(f1(v1,1))+f2(f1(v1,1))f1(v1,1)v1,2+f2(f1(v1,1))r1(v1,1,v1,2)+r2(f1(v1,1),f1(v1,1)v1,2+r1(v1,1,v1,2)).

But as f2(f1(v1,1))r1(v1,1,v1,2)f2(f1(v1,1))r1(v1,1,v1,2), limv1,20f2(f1(v1,1))r1(v1,1,v1,2)v1,2=0, and r2(f1(v1,1),f1(v1,1)v1,2+r1(v1,1,v1,2))f1(v1,1)v1,2+r1(v1,1,v1,2)=r2(f1(v1,1),f1(v1,1)v1,2+r1(v1,1,v1,2))v1,2v1,2f1(v1,1)v1,2+r1(v1,1,v1,2):=V2.

But f1(v1,1)v1,2+r1(v1,1,v1,2)v1,2f1(v1,1)v1,2v1,2+r1(v1,1,v1,2)v1,2 where limv1,20r1(v1,1,v1,2)v12=0 and f1(v1,1)v1,2v1,2f1(v1,1)v1,2v1,2=f1(v1,1). So, as v1,20, f1(v1,1)v1,2+r1(v1,1,v1,2)0, and so V20, but as v1,2f1(v1,1)v1,2+r1(v1,1,v1,2) does not approach 0, limv1,20r2(f1(v1,1),f1(v1,1)v1,2+r1(v1,1,v1,2))v1,2=0.


References


<The previous article in this series | The table of contents of this series | The next article in this series>